SYNTHETIC OILS COMMONLY USED AT NYE **Synthetic Oils** Temp Range (°C) **Key Characteristics/Typical Applications** Compared to PAO and diesters, offer improved hydrolytic, thermal, and oxidative stability. Good **Alkylated Naphthalenes (AN)** -30 to 180 blendstock for polyalphaolefins requiring high stability under extreme conditions. Highly specialized fluid that combines the low vapor pressure of a PFPE with the lubricity and Pennzane® from Shell (MAC) -45 to 125 film strength of a PAO. Typically used in aerospace and critical vacuum applications. Extremely stable, nonflammable, chemically inert, low vapor pressure fluids. Used in extreme Perfluoropolyethers (PFPE) -90 to 250 environments and to avoid plastic and elastomer compatibility problems. Stable, lubricious fluids compatible with most plastics and elastomers. A drop-in replacement Polyalphaolefins (PAO) -60 to 125 for petroleum, it's used in countless applications in many industries. Good load-carrying ability, compatible with most elastomers, non-carbonizing. Often used in **Polyglycols** -40 to 125 arcing switches. Radiation, chemical, and acid-resistant fluids. Traditionally used for noble-metal connectors and Polyphenylethers (PPE) +10 to 250 high-temperature mechanical components. Stable fluids with good wetting characteristics. Commonly used with plastic gears, control **Silicones** -70 to 200 cables, and seals. Excellent wear resistance, stable, affinity for metals, handles heavy loads. Great for loaded **Synthetic Esters** -65 to 150

00140471011171/05								Plas	stics								Elastomer] [Solvent											
COMPATIBILITY OF SYNTHETIC BASE OILS											P0)																						
G Good F Fair P Poor S Soluble W Weakly soluble V Varies with grade Insoluble	Acetal (POM)	ABS	Phenolic (PF)	Polyamide-imide (PAI)	Polyamide (nylon) (PA)	Polycarbonate (PC)	Polyester	Polyetherimide	Polyethylene (PE)	Polyimide (TPI)	Polyphenylene oxide (PPO)	Polystyrene	Polysulfone (PSU)	PTFE	Polyvinyl chloride (PVC)	Terephthalate (PBT)	Buna S	Butyl	EPDM, EPR	Fluoroelastomer	Natural Rubber	Neoprene	Nitrile	Silicone		Water	Water plus detergent	Isopropanol	Methanol	Mineral Spirits	Fluoroalkane	Hydrofluorocarbon	Hydrofluoroether
Synthetic Hydrocarbon Includes: polyalphaolefin (PAO) Viscosity Index (VI) = 125-250	G	G	G	G	G	G	G	G	F	G	G	F	G	G	F	G	Р	Р	Р	G	Р	G	G	F		I	W	ı	ı	S	1	I	I
Polyglycol Polyether Viscosity Index (VI) = 160-220	G	Р	G	G	G	Р	Р	G	F	G	Р	G	Р	G	Р	G	Р	Р	G	G	Р	Р	F	G		V	W	٧	٧	S	1	I	I
Ester Diester, polyolester Viscosity Index (VI) = 120-150	G	Р	G	G	G	Р	Р	G	F	G	Р	Р	Р	G	Р	G	Р	Р	F	G	Р	Р	F	F		I	W	1	ı	S	1	I	ı
Silicone Dimethyl-, phenyl-, halogenated Viscosity Index (VI) = 200-650	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Р		I	W	1	ı	S	1	I	ı
Multiplyalkylated Cyclopentane Pennzane from Shell Viscosity Index (VI) = 135	G	G	G	G	G	G	G	G	F	G	G	F	G	G	F	G	Р	Р	Р	G	Р	G	G	F		_	W	1	ı	S	1	I	ı
Perfluoropolyether PFPE Viscosity Index (VI) = 100-350	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G		_	W	1	ı	ı	S	٧	٧
Polyphenylether PPE Viscosity Index (VI) = 40-60	G	Р	G	G	G	Р	Р	G	F	G	Р	Р	Р	G	Р	G	Р	Р	F	G	Р	Р	F	F		_	W	1	ı	S	1	ı	ı

GREASE GELLANTS COMMONLY USED AT NYE Gellants are selected for their water and salt-water resistance, thermal stability, thickening efficiency, lubricity, and shear stabulity.								
Organic Soaps Organic Non-Soaps								
Lithium	Urea							
Lithium Complex	PTFE							
Sodium	Inorganic							
Sodium Complex	Bentonite Clay							
Calcium	Silica							
Calcium Complex	Hydrophobic Silica							

GREASE STIFFNESS ANALOGS										
NLGI Grade	Penetration (worked, 60x)	Analog (unworked)								
000	445 - 475	Ketchup								
00	400 - 430	Applesauce								
0	355 - 385	Brown mustard								
1	310 - 340	Tomato paste								
2	265 - 295	Peanut butter								
3	220 - 250	Veg. shortening								
4	175 - 205	Frozen yogurt								
5	130 - 160	Smooth paté								
6	85 - 115	Cheese spread								

LUBRICANT ADDITIVES COMMONLY USED AT NYE

Metal Oxide

Aluminum Complex

Additive Type	Capabilities
Antioxidant	Prolongs life of base oil
Antiwear (EP)	Chemically active protection of loaded metal surfaces
Antirust	Slows rusting of iron alloys
Anticorrosion	Slows corrosion of non-noble metals
Filler	Thermal/electrical conductivity, special physical properties
Fortifier (EP)	Solids burnish into loaded surface under extreme pressures
Lubricity	Reduces coefficient of friction, starting torque or stick/slip
VI Modifier	Reduces rate of change of viscosity with temperature
Pour Point	Improves lower temperature limit
Dye	Visual/UV markers as inspection/assembly aids

OF COMMON FLUIDS										
KV (cSt @ 25°C	Material									
20,000,000	-	Gum Rubber								
5,000,000	-	dani nabbei								
10,000	-	Honey								
1,000	-	Castor Oil								
100	_	SAE 10 Motor Oil								
3	_	Milk								
1	_	Water								
.40	_	Acetone								

KINEMATIC VISCOSITY

OALOUI ATINIO THE	PPROXIMATE UNIT COST OF SYNTHETIC GREASE IN U.S. DOLLARS

Amou Grease Pe (dia. in	er Device	Volume (cc)	lbs./100,l Low Density (1gm/cc)	000 Units High Density (2gm/cc)	Grease Co LD@\$10/lb. (1gm/cc)	t Per Device HD@\$100/lb. (2gm/cc)		
•	1	0.0003	0.066	0.13	\$0.000006	\$0.00013		
•	2	0.0021	0.46	0.93	\$0.00005	\$0.0009		
•	3	0.007	1.54	3.09	\$0.00015	\$0.003		
	5	0.033	7.3	14.6	\$0.0007	\$0.015		
	10	0.26	57.3	114.6	\$0.006	\$0.11		